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Lecture 26

Data Converter  Performance Characterization



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation

Review from last lecture



Performance Characterization of Data Converters

• Dynamic characteristics
– Conversion Time or Conversion Rate (ADC)

– Settling time or Clock Rate (DAC)

– Sampling Time Uncertainty (aperture uncertainty or 
aperture jitter)

– Dynamic Range

– Spurious Free Dynamic Range (SFDR)

– Total Harmonic Distortion (THD)

– Signal to Noise Ratio (SNR)

– Signal to Noise and Distortion Ratio (SNDR)

– Sparkle Characteristics

– Effective Number of Bits (ENOB)

Review from last lecture



Performance Characterization
Offset

XOUT

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

Offset

• Offset strongly (totally) dependent upon performance at a single point

• Probably more useful to define relative to a fit of the data

(for DAC)

Review from last lecture



Performance Characterization

XT1 -XLSB - absolute

- in LSB

Offset

For ADC the offset is

T1  LSB

LSB 

X X

X

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XLSB

XOFFSET

XT1

(assuming  XLSB is the ideal first transition point)

(If ideal first transition point is not  XLSB, offset is shift from ideal)

Review from last lecture



Performance Characterization
Gain and Gain Error

XOUT

INXC0
C1 C2 C3 C4 C5 C6 C7

XREF
Gain 

Error

Ideal 

Output

Actual  

Output

For DAC 

Gain error determined after offset is subtracted from output

Review from last lecture



Performance Characterization
Gain and Gain Error

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XLSB

Gain 

Error

Actual Output

Ideal Output

For ADC 

Gain error determined after offset is subtracted from output

Review from last lecture



Integral Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

INL

XOUT

INL often expressed in LSB

    OUT  OF
k

 LSB

k - k
INL =

X X

X

 k
0 k N-1

INL= max INL
 

• INL is often the most important parameter of a DAC

• INL0 and INLN-1 are 0 (by definition)

• There are N-2 elements in the set of INLk that are of concern 

• INL is almost always nominally 0 (i.e. designers try to make it 0)

• INL is a random variable at the design stage

• INLk is a random variable for 0<k<N-1

• INLk and INLk+j are almost always correlated for all k,j (not incl 0, N-1)

• Fit Line is a random variable

• INL is the N-2 order statistic of a set of N-2 correlated random variables

Review from last lecture



How many bits in this DAC?

How many bits in this ADC?

XIN
ADC

8

XOUT

4

128 XOUT

DAC
INX

4

12

Manufacturers can “play games” with characterizing data converters

That is one of the major reasons it is not sufficient to simply specify the 

number of bits of resolution to characterize data converters !

Could even have random number generator generating 4 MSBs in this ADC



ENOB  of DAC
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

INL

XOUT

• Concept of Equivalent Number of Bits (ENOB) is to assess performance of an 

actual DAC to that of an ideal DAC at an “equivalent” resolution level

• Several different definitions of ENOB exist for a DAC

• Here will define ENOB as determined by the actual INL performance

• Will use subscript to define this ENOB,   e.g.  ENOBINL 



ENOBINL of DAC
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

INL

XOUT

Premise:  A  good DAC is often designed 

so that the INL is equal to ½ LSB.  Thus 

will assume that if an n-bit DAC has an 

INL of ½ LSB that the ENOBINL=n.

1

1 1 1

2 2 2EFF EFFn n

REF

INL

V 
  

Thus define  the effective number of bits, nEFF by the expression

where INL is in volts  

2log 1REF
EFF INL

V
n ENOB

INL

 
   

 

Thus, if an n-bit DAC has an INL of ½ LSB

 1

2 2 2

2
log 1 log 1 log 2 1

2

n
nLSBREF

INL
LSB

VV
ENOB n

VINL



 
  

        
    

 



ENOBINL of DAC
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

INL

XOUT

Premise:  A  good DAC is often designed 

so that the INL is equal to ½ LSB.  Thus 

will assume that if an n-bit DAC has an 

INL of ½ LSB that the ENOBINL=n.

Thus, if an n-bit DAC has an INL of ½ LSB

 1

2 2 2

2
log 1 log 1 log 2 1

2

n
nLSBREF

INL
LSB

VV
ENOB n

VINL



 
  

        
    

 

Note:   With this definition, an n-bit DAC could actually have an ENOBINL larger than n



Integral Nonlinearity (ADC)

Actually probably more than 3



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Transition points are not uniformly spaced !

More than one definition for INL exists !

Will give two definitions here



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

XREF

End Point 

Fit LIne

XREF

XLSB

2XLSB

3XLSB

4XLSB

5XLSB

6XLSB

7XLSB

 INX

XT1 XT2 XT3 XT4

XT5

XT6

XT7

 INF INX X

Consider end-point fit line with interpreted output axis

   LSB
INF IN IN T1X =m + -m

2

 
 
 

X
X X X

  LSB

 T7 T1

N-2
m=

-

X 

X X 



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

XREF

End Point 

Fit LIne

XREF

XLSB

2XLSB

3XLSB

4XLSB

5XLSB

6XLSB

7XLSB

 INX

XT1 XT2 XT3 XT4

XT5

XT6

XT7

 INF INX X

     IN IN IN INF ININL = -XX X X X

  
IN REF

IN
0

INL= max INL
 X X

X

Continuous-input based INL definition



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

XREF

End Point 

Fit LIne

XREF

XLSB

2XLSB

3XLSB

4XLSB

5XLSB

6XLSB

7XLSB

 INX

XT1 XT2 XT3 XT4

XT5

XT6

XT7

 INF INX X

 
   IN IN INF IN

IN
 LSB

-X
INL =

X X X
X

X

  
IN REF

IN
0

INL= max INL
 X X

X

Continuous-input based INL definition

Often expressed in LSB



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

XREF

End Point 

Fit LIne

XREF

XLSB

2XLSB

3XLSB

4XLSB

5XLSB

6XLSB

7XLSB

 INX

XT1 XT2 XT3 XT4

XT5

XT6

XT7

 INF INX X

With this definition of INL, the INL of an ideal ADC is XLSB/2 (for XT1=XLSB)

This is effective at characterizing the overall nonlinearity of the ADC but

does not vanish when the ADC is ideal and the effects of the breakpoints

are not explicit



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

XIN

XFT1 XFT2 XFT3 XFT4 XFT5 XFT6 XFT7

INL3

Break-point INL definition (most popular)

Place N-3 uniformly spaced points between XT1 and XT(N-1) designated XFTk

 max k
2 k N-2

INL INL
 



1k Tk FTkINL = - k N-2 X X



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

XIN

XFT1 XFT2 XFT3 XFT4 XFT5 XFT6 XFT7

INL3

Break-point INL definition (assuming all break points present)

 max k
2 k N-2

INL INL
 



Often expressed in LSB

1Tk FTl
k

 LSB

-
INL = k N-2 

X X

X

For an ideal ADC, INL is ideally 0



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

XIN

XFT1 XFT2 XFT3 XFT4 XFT5 XFT6 XFT7

INL3

Break-point INL definition

 max k
2 k N-2

INL INL
 



1Tk FTl
k

 LSB

-
INL = k N-2 

X X

X

• INL is often the most important parameter of an ADC

• INL1 and INLN-1 are 0 (by definition)

• There are N-3 elements in the set of INLk that are of concern 

• INL is a random variable at the design stage

• INLk is a random variable for 0<k<N-1

• INLk and INLk+j are correlated for all k,j (not incl 0, N-1) for most architectures

• Fit Line (for cont INL) and uniformly spaced break pts (breakpoint INL) are random 

variables

• INL is the N-3 order statistic of a set of N-3 correlated random variables (breakpoint 

INL)



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

XIN

XFT1 XFT2 XFT3 XFT4 XFT5 XFT6 XFT7

INL3

Break-point INL definition

 max k
2 k N-2

INL INL
 



1Tk FTl
k

 LSB

-
INL = k N-2 

X X

X

• At design stage, INL characterized by standard deviation of the random variable

• Closed-form expressions for INL almost never exist because PDF of order 

statistics of correlated random variables is extremely complicated

• Simulation of INL very time consuming if n is very large (large sample size required   

to establish reasonable level of confidence)
-Model parameters become random variables

-Process parameters affect multiple model parameters causing model parameter correlation

-Simulation times can become very large



Integral Nonlinearity (ADC)
Nonideal ADC

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

XIN

XFT1 XFT2 XFT3 XFT4 XFT5 XFT6 XFT7

INL3

Break-point INL definition

 max k
2 k N-2

INL INL
 



1Tk FTl
k

 LSB

-
INL = k N-2 

X X

X

• INL can be readily measured in laboratory but often dominates test costs 

because of number of measurements needed when n is large

• INL is a random variable and is a major contributor to yield loss in many designs

• Expected value of INLk at k=(N-1)/2 is largest for many architectures

• This definition does not account for missing transitions 

• Major effort in ADC design is in obtaining an acceptable yield



INL-based ENOB
Consider initially the continuous INL definition for an ADC where the INL of an 

ideal ADC is XLSB/2

Assume

Define the effective LSB by

EQ

 REF
 LSBEFF n

=
2

X
X

Thus
EQn

LSBEFFINL=θ2 X

Since an ideal n-bit ADC has an INL of XLSB/2, express INL in terms of ideal ADC

1)

2
EQ(n LSBEFFX

INL= θ2
   

    
Setting term in [ ] to 1, can solve for nEQ to obtain

 EQ 2 R 2
1

ENOB = n  = log n -1-log
2θ


 

 
 

REF LSBRINL= θX  = X

where XLSBR is the LSB based upon the defined resolution

where nR is the defined resolution



INL-based ENOB
 R 2ENOB = n -1-log 

ENOB

½ n

1 n-1

2 n-2

4 n-3

8 n-4

16 n-5

Consider an ADC with specified resolution of nR and INL of ν LSB





Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

 
   OUT OUT LSB

LSB

X k -X k-1 -X
DNL k =

X

DNL(k) is the actual increment from code (k-1) to code k  minus the ideal 

increment normalized to XLSB



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

 
   OUT OUT LSB

LSB

X k -X k-1 -X
DNL k =

X

Increment at code k is a signed quantity and will be negative if XOUT(k)<XOUT(k-1)

  
1 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal DAC



Monotonicity  (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT

A DAC is monotone if XOUT(k) > XOUT(k-1) for all k 

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT

Monotone DAC Non-monotone DAC

A DAC is monotone if DNL(k)> -1 for all k

Theorem:

Definition:



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

Theorem:  The INLk of a DAC can be obtained from the DNL by the expression 

 
k

k
i=1

INL = DNL i

Caution:  Be careful about using this theorem to measure the INL since errors

in DNL measurement (or simulation) can accumulate

Corollary:   DNL(k)=INLk-INLk-1



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

Theorem:  If the INL of a DAC satisfies the relationship

then the DAC is monotone

LSB
1

INL <  X
2

Note:  This is a necessary but not sufficient condition for monotonicity



Differential Nonlinearity (ADC)
Nonideal ADC

 
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

DNL(k) is the code width for code k – ideal code width normalized to XLSB

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Code width 

for code C3 



Differential Nonlinearity (ADC)
Nonideal ADC

 
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Code width 

for code C3 

  
2 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal ADC

Note:  In some nonideal ADCs, two or more break points could cause transitions 

to the same code Ck making the definition of DNL ambiguous



Monotonicity in an ADC
Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Monotone ADC Nonmonotone ADC

Definition:   An ADC is monotone if the 

Note:  Some authors do not define monotonicity in an ADC. 

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XB1 XB2 XB3 XB4 XB5 XB6

XB7

OUT  k OUT  m  k  mX ( ) X ( ) whenever X X X X

Note:  Have used XBk instead of XTk since more than one transition point to a given 

code



Missing Codes (ADC)
Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3

XT4

XT6

XT7

No missing codes One missing code

Definition:   An ADC has no missing codes if there are N-1 transition points and a 

single LSB code increment occurs at each transition point. If these criteria are not

satisfied, we say the ADC has missing code(s).

Note:  Some authors claim that missing codes in an ADC are the counterpart 

to nonmonotonicity in a DAC.  This association is questionable. 

Note:  With this definition, all codes can be present but we still say it has 

“missing codes”



Missing Codes (ADC)
Nonideal ADCs

Missing codes Missing code with all codes present

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4 XT5

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4XT5 XT6

XT7



Weird Things Can Happen

Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XB1 XB2

XB3

XB4 XB5 XB6

XB7

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4XT5 XT6

XT7

• Multiple outputs for given inputs

• All codes present but missing codes

Be careful on definition and measurement  of linearity parameters to avoid 

having weird behavior convolute analysis, simulation or measurements

Most authors (including manufacturers) are sloppy with their definitions of data 

converter performance parameters and are not robust to some weird operation



Linearity Measurements (testing)

VIN(t) DUT

VREF

XIOUT

Consider ADC

Linearity testing often based upon code density testing

Code density testing:

VREF

t

VIN(t)

VREF

t

VIN(t)

Ramp or multiple ramps often used for excitation

Linearity of test signal is critical (typically 3 or 4 bits more linear than DUT)



Linearity Measurements (testing)

VIN(t) DUT

VREF

XIOUT

Code density testing:

VREF

t

VIN(t)

C0
CN-1

ˆ
OUTX ,  C

• First and last bins generally have many extra counts (and thus no useful information)

• Typically average 16 or 32 hits per code



Linearity Measurements (testing)

Code density testing:

C0
CN-1

ˆ
OUTX ,  C

N-2

i
i=1

C

C =
N-2



i
i

C -C
DNL =

C

ˆ

1

i

i k
k=1

0 i=0,N-2

INL = C -iC

N-3
C

i



 
 
   



 
1 i N-2

DNL = max iDNL
 

 
1 i N-3

INL = max iINL
 

 This measurement is widely used

 Does not keep track of order bins are filled

 Some weird things can occasionally happen 

with this approach



Linearity Measurements (testing)

Code density testing:

C0
CN-1

ˆ
OUTX ,  C

 
1 i N-2

DNL = max iDNL
 

 
1 i N-3

INL = max iINL
 

Though INL and DNL for an ADC are rigorously defined, measuring the 

actual transition points is not practical even if n is small so code density 

tests are almost always used to “test” the INL and the DNL 



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Linearity

A data converter (ADC or DAC) can be viewed as an amplifier that interfaces 

between the analog and digital domains

Linearity is of considerable concern in amplifiers irrespective of whether the 

I/O is analog:analog,  analog:digital, digital:analog, or digital:digital

Though INL and DNL give some information about linearity (the term “linearity” 

is even included in their names!), much information about the actual linearity of 

a data converter is suppressed in the INL and DNL metrics

The seemingly simple concept of linearity is challenging to accurately 

characterize



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation

Linearity 

Metrics

Spectral 

Characterization



Spectral Characterization



INL Often Not a Good Measure of Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

Four identical INL with dramatically different linearity



Linearity Issues

• INL is often not adequate for predicting the 

linearity performance of a data converter

• Distortion (or lack thereof) is of major 

concern in many applications

• Distortion is generally characterized in 

terms of the harmonics that may appear in 

a waveform when a periodic excitation is 

applied at the input



Two Popular Methods of Linearity 

Characterization

• Integral and Differential Nonlinearity (metrics:  INL, DNL)

• Spectral Characterization (Based upon spectral harmonics of 

sinusoidal signals   metrics: THD, SFDR, SDR SNR)

XIN

XOUT

XREF

XREF

k

kA

1 2 3 4 5 6



Spectral Analysis

T

T

2π
ω 

 





1k

kk0 θtkωsinAAf(t)

alternately

   









1k

k

1k

k0 tkωcosbtkωsinaAf(t)

2

k

2

kk baA 

If f(t) is periodic

Termed the Fourier Series Representation of f(t)



Spectral Analysis

Nonlinear

System (weakly)

XIN(t) XOUT(t)

Often the system of interest is ideally linear but practically it is weakly 

nonlinear.  

Often the input is nearly periodic and often sinusoidal and in latter case 

desired output is also sinusoidal

Weak nonlinearity will cause harmonic distortion (often just termed 

distortion)  of signal as it is propagated through the system

Spectral analysis often used to characterize effects of the weak 

nonlinearity  



Spectral Analysis

Nonlinear

System (weakly)

XIN(t) XOUT(t)

Distortion Types:  

Frequency Distortion

Nonlinear Distortion (alt. harmonic distortion)

Frequency Distortion:  Amplitude and phase of system is altered but 

output is linearly related to input

Nonlinear  Distortion:  System is not linear, frequency components 

usually appear in the output that are not present in the input

Spectral Analysis is the characterization of a system with a periodic input with 

the Fourier series relationships between the input and output waveforms



Spectral Analysis

Nonlinear

System

XIN(t) XOUT(t)

If    θωtsinXtX mIN 

All spectral performance metrics depend upon the sequences 

Spectral performance metrics of interest:    SNDR, SDR, THD, SFDR, IMOD

0k k
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1 1
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   

Alternately
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 



Stay Safe and Stay Healthy !



End of Lecture 26


